
ABSTRACT: A computational framework for Bayesian uncertainty quantification and propagation (UQ+P) in structural 
dynamics is presented. High performance computing techniques are integrated with Bayesian techniques to efficiently handle 
large-order models of hundreds of thousands or millions degrees of freedom, and localized nonlinear actions activated during 
system operation. Fast and accurate component mode synthesis (CMS) techniques, consistent with the finite element model 
parameterization, are employed to achieve drastic reductions in the model order and the computational effort. Surrogate models 
are also used to substantially speed-up computations, avoiding full system re-analyses. Significant computational savings are 
achieved by adopting parallel computing algorithms to efficiently distribute the computations in available multi-core CPUs. 
Important issues related to the computational efficiency of the Bayesian asymptotic approximations versus the stochastic 
simulation algorithms for conventional or high performance computing environments are discussed. Implementation issues for 
Bayesian UQ+P for linear and nonlinear structural dynamics models using vibration measurements are emphasized.  
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1 INTRODUCTION 

Bayesian inference is used for quantifying and calibrating 
uncertainty models in structural dynamics based on vibration 
measurements, as well as propagating these uncertainties in 
structural dynamics simulations for updating robust 
predictions of system performance, reliability and safety ([1], 
[2]). The Bayesian tools for identifying system and 
uncertainty models as well as performing robust prediction 
analyses are Laplace methods of asymptotic approximation 
[3] and stochastic simulation algorithms such as Markov 
Chain Monte Carlo (MCMC) [4-6], Transitional MCMC [7] 
and Delayed Rejection Adaptive Metropolis (DRAM) [8].  

Both tools are used to represent the posterior distribution of 
the parameters of a model class introduced to simulate the 
behavior of the engineering system, as well as compute 
multidimensional integrals over high-dimensional spaces of 
the uncertain model parameters, manifested in the 
formulations for model class selection, robust predictions and 
model averaging [9]. The asymptotic approximations involve 
solving optimization problems as well as computing the 
Hessian of certain functions in a small number of points in the 
parameter space. The stochastic simulation tools involve 
generating samples for tracing and then populating the 
important uncertainty region in the parameter space, as well as 
evaluating integrals over high-dimensional spaces of the 
uncertain model parameters. These tools require a moderate to 
very large number of system re-analyses to be performed over 
the space of uncertain parameters. Consequently, the 
computational demands depend highly on the number of 
system analyses and the time required for performing a system 
analysis.  

For complex models of engineering systems, one simulation 
may require a significant amount of time and the overall 
computational demands involved in the Bayesian tools may be 

substantial, or even excessive for stochastic simulation 
algorithms. The complexity and computational demands 
depend on the complexity of the model of the analyzed system 
as well as the number of uncertain parameters involved. 
Moreover it depends on the support of the posterior 
distribution of the model parameters, the size of the support in 
the multi-dimensional parameter space, the multimodality of 
the posterior PDF and the unidentifiability that may arise 
when the number of the data are not informative enough for 
the number of model parameters involved.  

For FE models involving hundreds of thousands or even 
million degrees of freedom and localized nonlinear actions 
activated during system operation, the computational demands 
in the Bayesian framework may be excessive. The present 
work proposes methods for drastically reducing the 
computational demands at the system, algorithm and hardware 
levels involved in the implementation of Bayesian tools. At 
the system level, CMS techniques [10, 11] are integrated with 
Bayesian techniques to efficiently handle linear structural 
components of large-order models of hundreds of thousands 
or millions degrees of freedom and localized nonlinear actions 
activated during system operation. The dynamics of the linear 
components is represented by the dynamics of the lowest 
fixed-based interface modes and the interface constraints 
modes. At the level of the stochastic simulation algorithms, 
surrogate models [12] are adopted to drastically reduce the 
number of computationally expensive full model runs. At the 
computer hardware level, parallel computing algorithms [13] 
are proposed to efficiently distribute the computations in 
available multi-core CPUs. Important issues related to the 
computational efficiency of the asymptotic approximations 
versus the stochastic simulation algorithms for conventional 
or high performance computing (HPC) environments are 
discussed.  
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This study is organized as follows. The Bayesian 
framework for uncertainty quantification, calibration and 
propagation is reviewed in Section 2. The formulations using 
the asymptotic approximations and the stochastic simulation 
tools are presented in Sections 3 and 4, respectively. Methods 
to reduce the computational demands, such as model 
reduction techniques and surrogate models, are presented in 
Section 5. In Section 6 the efficient of computational tools for 
carrying out the Bayesian analysis in conventional (serial) and 
HPC (parallel) computing environments is investigated. 
Advantages and disadvantages of the asymptotic and 
stochastic simulation algorithms are investigated from the 
point of view of accuracy and computational efficiency. 
Implementation issues in linear and nonlinear structural 
dynamics models using vibration measurements are discussed 
in Section 7. Conclusions are summarized in Section 8. 

2 BAYESIAN UNCERTAINTY QUANTIFICATION 
AND PROPAGATION 

2.1 Formulation 

Consider a parameterized class Μ
m

 of structural dynamics 

models used to predict various output quantities of interest of 

a system. Let m
N

m
Rq Î  be a set of parameters in this model 

class that need to be estimated using experimental data and 

( | )
m m

f q Μ  be model predictions of output quantities of 

interest given a value of the parameter set 
m
q .  

The values of the model parameters 
m
q  are considered to be 

uncertain. Probability distributions are convenient 
mathematical tools to quantify the uncertainty in these 
parameters. Specifically, the probability distribution of the 

parameter set 
m
q  quantifies how plausible is each possible 

value of the model parameters. The user may assign a prior 

probability distribution ( )
m m

p q  to the model parameters to 

incorporate prior information on the values of the model 
parameters. The structural model and uncertainty propagation 
algorithms can be used to identify the uncertainty in the 
prediction of the output quantities of interest. However, the 

probability distribution ( )
m m

p q  is subjective based on 

previous knowledge and user experience. 

2.2 Parameter Estimation 

In Bayesian inference, the interest lies in updating the 

probability distribution of the model parameters 
m
q  based on 

measurements and then propagate these uncertainties through 
the structural dynamics model to quantify the uncertainty in 
the output quantities of interest.   

For this, let 0ˆ ˆ{ , 1, , }N

r
D y y R r mº = Î =  be a set of 

observations available from experiments, where m  is the 
number of observations. The Bayesian formulation starts by 
building a probabilistic model that characterizes the 

discrepancy between the model predictions ( | )
m m

f q Μ  

obtained from a particular value of the model parameters 
m
q  

and the corresponding data ŷ  that are available from 

experiments. This discrepancy always exists due to 
measurement and model errors. An error term e  is introduced 

to denote this discrepancy. The observation data and the 
model predictions satisfies the predicton error equation  

 ˆ ( | )
m m

y f eq= +Μ  (1) 

A probabilistic structure for the prediction error needs to be 
defined in order to proceed with the Bayesian calibration. Let 

e
Μ  be a family of probability model classes for the error term 

e . This model class depend on a set of prediction error 

parameters 
e
q  to be determined using the experimental data. 

Similarly to the structural model parameters 
m
q , probability 

distribution ( )
e e

p q  is also assigned to quantify the possible 

values of the prediction error parameters 
e
q .  

The Bayesian approach [14] to model calibration is used for 

updating the values of the combined set ( , )
m e

q q q=  

associated with the structural and the prediction error 

parameters. The parameters 
m
q  and 

e
q  can be considered to 

be independent with prior probability distribution for the 

combined set given by ( | ) ( | )
m m m

p q p q=Μ Μ ( | )
e e e

p q Μ , 

where 
m e

Μ = {Μ ,Μ }  includes the structural and prediction 

error model classes. The updated distribution ( | , )p Dq Μ  of 

the parameters q , given the data D  and the model class Μ , 

results from the application of the Bayes theorem  

 
( | , ) ( | )

( | , )
( | )

p D
p D

p D

q p q
q =

Μ Μ
Μ

Μ
 (2) 

where ( | , )p D q Μ  is the likelihood of observing the data 

from the model class and ( | )p D Μ  is the evidence of the 

model, given by the multi-dimensional integral 

 ( | ) ( | , ) ( | ) p D p D dq p q q
Q

= òΜ Μ Μ  (3) 

over the space of the uncertain model parameters.  
The updated probability distribution of the model 

parameters depends on the selection of the prediction error e . 

Invoking the maximum entropy principle, a normal 
distribution is a reasonable choice for the error since the 
normal distribution is the least informative among all 
distributions with specified the lowest two moments. 
Consequently, the prediction error is assumed to follow the 
normal distribution  ~ ( , )e N m S , where m  is the mean and 

S  is the covariance. The structure imposed on the mean 
vectors and the covariance matrices affect the uncertainty in 
the model parameter estimates. A diagonal matrix is a 
reasonable choice for the covariance matrix, that is, 

2 2ˆ( )
r r

diag ysS = , where the variance parameters 2

r
s  are 

unknown constants to be determined by the Bayesian 
calibration. Depending on the nature of the simulated 
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quantities of interest, alternative prediction error models can 
be used that group the variances into two or more groups, 
each one associated with the same variance parameter, thus 
reducing the number of prediction error model parameters. 

The usual case is to assume that 2

r
s  are the same so that the 

covariance is described by one parameter. A zero mean model 
error is usually assumed so that 0m = . However, to take into 

account the bias in the model predictions of the various 

response quantities involved in ( | )
m m

f q Μ  and try to 

reconcile conflicting predictions, one could introduce a shift 
in the predictions by taking 0m ¹ . Recently, the effect of 

prediction error correlation has also been investigated and 
found to affect the results of the model calibration in 
structural dynamics when the sensors are closely located [15].  

Using the prediction error equation (1), the measured 
quantities follow the normal distribution 
ˆ ~ ( ( | ) ( ), ( ))

m e e
y N f Dq m q q+ S , where the explicit 

dependence of ( )
e

m q  and ( )
e
qS  on 

e
q  is introduced to point 

out that the mean and the covariance of the overall normal 
prediction error model depends only on the model prediction 

error parameters 
e
q  and is independent of the structural 

parameters 
m
q . Consequently, the likelihood ( | , )p D q Μ  of 

observing the data follows the multi-variable normal 
distribution given by  

 
1/ 2

/ 2

| ( ) | 1
( | , ) exp ( ; )

(2 ) 2

e

m
p D J

q
q q

p

-S
= -

é ù
ê ú
ê úë û

Μ Μ  (4) 

where  

 1ˆ ˆ( ; ) [ ( | )] ( )[ ( | )]T

m e m
J y f y fq q q q-= - S -Μ Μ Μ  (5) 

In particular, the optimal value q̂  of the model parameters 

corresponds to the most probable value that is obtained by 
maximizing the posterior probability distribution ( | , )p Dq Μ  

or, equivalently, minimizing the function  

 

( ; ) ln ( | , )

1 1
            ( ; ) | ( ) | ln ( | )

2 2
e

g p D

J

q q

q q p q

=-

= + S -

Μ Μ

Μ Μ
 (6) 

For the case for which analytical expressions for ( | )
m

f q Μ  

are available, computationally efficient gradient-based 
optimization algorithms can be used to obtain the optimal 
value of the model parameters by minimizing the function 

( ; )g q Μ . 

2.3 Model Selection 

The Bayesian probabilistic framework can also be used to 
compare two or more competing model classes and select the 
optimal model class based on the available data. Consider a 

family Μ = {Μ
Fam i

, 1, , }i   , of   alternative, 

competing, parameterized FE and prediction error model 

classes, and let 
qq Î i

N

i
R  be the free parameters of the model 

class Μ
i
. The posterior probabilities Μ( | )

i
P D  of the 

various model classes given the data D  is [16] 

 =
Μ Μ

Μ
Μ

( | ) ( )
( | )

( | )

i i

i

Fam

p D P
P D

p D
 (7) 

where Μ( )
i

P  is the prior probability and Μ( | )
i

p D  is the 

evidence of the model class Μ
i
. The optimal model class 

M
best

 is selected as the one that maximizes M( | )
i

P D  given 

by (7). Model class selection is used to compare between 
alternative model classes and select the best model class (e.g. 
[17]) as well as for structural damage identification [18] 

2.4 Uncertainty Propagation 

Let q  be an output quantity of interest in structural dynamics 

simulations. Posterior robust predictions of q  are obtained by 

taking into account the updated uncertainties in the model 
parameters given the measurements D . Let ( | , )p q q Μ  be 

the conditional probability distribution of q  given the values 

of the parameters. Using the total probability theorem, the 
posterior robust probability distribution ( | , )p q D Μ  of q , 

taking into account the model Μ  and the data D , is given by 
[1] 

 ( | , ) ( | , ) ( | , ) p q D p q p D dq q q= òΜ Μ Μ  (8) 

as an average of the conditional probability distribution 
( | , )p q q Μ  weighting by the posterior probability 

distribution ( | , )p Dq Μ  of the model parameters.  

Let ( ; )G q q  be a function of a deterministic output quantity 

of interest ( )q q . A posterior robust performance measure of 

the system given the data D  is  

 [ ( ; ) | , )] ( ; ) ( | , ) E G q D G q p D dq q q q= òΜ Μ  (9) 

For ( ; ) ( )G q qq q=  and 
2( ; ) ( ( ) [ ( ) | , ])G q q E q Dq q q= - Μ , the measure (9) is the 

robust mean and the variance of the output quantity of interest 
q  taking into account the model parameter uncertainties that 

are estimated by the data D .  

3 ASYMPTOTIC APPROXIMATIONS 

3.1 Posterior PDF, Model Selection and Robust 
Predictions 

For large enough number of measured data, the posterior 
distribution of the model parameters in (2) can be 
asymptotically approximated by a Gaussian distribution [3]  

Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

113



1/ 2

/ 2

ˆ| ( ) | 1 ˆ ˆ ˆ( | , ) exp ( ) ( )( )
(2 ) 2

T

N

h
p D h

q

q
q q q q q q

p
» - - -

é ù
ê ú
ê úë û

Μ   (10) 

centered at the most probable value q̂  of the model 

parameters with covariance matrix equal to the inverse of the 

Hessian ( ) ( , )Th gq q= Μ  of the function ( ; )g q Μ  in (6) 

evaluated at the most probable value q̂ . This approximation 

is also known as the Bayesian central limit theorem. The 
asymptotic expression (10), although approximate, provides a 
good representation of the posterior PDF for a number of 
applications involving even a relatively small number of data. 
Given the Gaussian approximation (10), the marginal 
distributions of the parameters are readily obtained to be 
Gaussian distributions with means and variances equal to the 

individual means appearing in the mean vector q̂  and the 

variances appearing in the diagonal elements of the 

covariance matrix 1 ˆ( )h q- .  

The asymptotic approximation (10) fails to provide an 
adequate representation of the posterior probability 
distribution in the case of multimodal distributions. To 
improve on the asymptotic approximation, one needs to 
identify all modes of the posterior PDF and take them into 
account in the asymptotic expression by considering a 
weighted contribution of each mode with weights based on the 
probability volume of the PDF in the neighborhood of each 
mode [3]. The weighted estimate is reasonable, provided that 
the modes are separable. For interacting modes or closely 
spaced modes this estimate is inaccurate due to overlapping of 
the regions of high probability volume involved in the 
interaction. Numerical implementation problems arise in 
multi-modal cases, associated with the inconvenience in 
estimating all modes of the distribution [19]. The asymptotic 
approximation fails to provide acceptable estimates for un-
identifiable cases [20] manifested for relatively large number 
of model parameters in relation to the information contained 
in the data.  

The results from the asymptotic estimate are also useful for 
efficiently populating the posterior PDF with samples 
generating from MCMC algorithms. For uni-modal posterior 
PDFs, the asymptotic estimate can be performed as a first step 
in a Bayesian analysis to obtain information and identify the 
importance region in the parameter space of high posterior 
probability volume. Then the mode of the distribution can be 
used as a starting point of a stochastic simulation algorithm 
for exploring the support of the posterior PDF, while the 
Hessian at the mode provides valuable information for 
selecting the proposal PDF in MCMC algorithms. For multi-
modal posterior PDFs with disjoint supports, the information 
from an asymptotic approximation may be misleading since 
other important regions in the parameter space may be easily 
missed. As a result, the stochastic simulation algorithms 
starting from the mode provided by the asymptotic estimate 
will usually fail to adequately explore the parameter space and 
identify the domains with high probability volume.  

For model selection, an asymptotic approximation [16, 21, 
22] based on Laplace’s method can also used to give an 
estimate of the evidence integral in (3) that appears in the 
model selection equation (7). Substituting this estimate in (7), 

the final asymptotic estimate for Μ( | )
i

P D  is given in the 

form  

 ( )p
q p q

q

-é ù= ê úë û

é ù
ê úë û

Μ Μ

Μ Μ
Μ

Μ

1
( | ) ( | ) 2

ˆ ˆ( | , ) ( | )
                 ( )

ˆdet ( , )

in

i Fam

i i i i
i

i i i

P D p D

p D
P

h

 (11) 

where ˆ
i
q  is the most probable value of the parameters of the 

model class Μ
i
 and ( ) ( , )T

i i
h gq q= Μ  is the Hessian of 

the function ( ; )
i i i

g q Μ  given in (6) for the model class Μ
i
. It 

should be noted that the asymptotic estimate for the 

probability of a model class Μ
i
 can readily be obtained given 

the most probable value and the Hessian of the particular 
mode. For the multi modal case the expression (11) can be 
generalized by adding the contributions from all modes.  

For the robust prediction integrals such as (8) or (9), a 
similar asymptotic approximation can be applied to simplify 
the integrals. Specifically, substituting the posterior PDF 

( | , )p Dq Μ  from (2) into (9), one obtains that the robust 

prediction integral is given by [1] 

[ ] 1
[ ( ; ) | , )] ( | )

( ; ) ( | , ) ( | )                         

E G q D p D

G p D dq q p q q

q -
=

ò

Μ Μ

Μ Μ Μ
 (12) 

Introducing the function  

 ( ; ) ln[ ( ; ) ( | , ) ( | )]
G

r G p Dq q q p q=-Μ Μ Μ Μ  (13) 

the integral in (12) takes the form of Laplace integral which 
can be approximated as before in the form:  

 
[ ]

exp[ ( )] 2
exp[ ( )] 

det ( )

m

G

G

G

r
r d

H




q p

q q
q

-
- =

é ùê úë ûò  (14) 

where q  is the value of q  that minimizes the function 

( ; )
G

r q Μ , and ( , )
G

H q Μ  is the Hessian of the function 

( ; )
G

r q Μ  evaluated at q . Substituting in (12), using (11) to 

asymptotically approximate the term ( | )p D Μ  and replacing 

( )
G

r q  by (13), it can be readily derived that 

[ ( ; ) | , )]E G q Dq Μ  is given by the asymptotic approximation 

[23] 

 
[ ]
[ ]

( | , )
[ ( ) | , )] ( ; )  

ˆ( | , )

ˆdet ( , )( | )
                               

ˆ( | ) det ( , )

p D
E G q D G

p D

h

H








q
q

q

qp q

p q q

=
Μ

Μ Μ
Μ

ΜΜ
Μ Μ

 (15) 

The error in the asymptotic estimate is of order 2N  . 
However, the asymptotic estimate requires solving two extra 
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optimization problems, one for the mean and one for the 

variance of ( ; )G q q . In general, one needs to carry out 2
G

N  

extra optimization problems, where 
G

N  is the number of 

output quantities of interest. Such optimization problems are 
independent and can be performed in parallel.   

Similarly, the asymptotic approximation for the posterior 
robust probability distribution ( | , )p q D Μ  of q  is given by  

 
[ ]

[ ]

( | , )
( | , ) ( ( ( )); )  

ˆ( | , )

ˆdet ( , )( ( ) | )

ˆ( | ) det ( ( ), )
                   

p

p D
p q D p q q

p D

hq

H q








q
q

q

qp q

p q q

=
Μ

Μ Μ
Μ

ΜΜ
Μ Μ

 (16) 

where ( )qq  is the value of   that minimizes the function  

 ( ; ) ln[ ( | , ) ( | , ) ( | )]
p

r p q p Dq q q p q=-Μ Μ Μ Μ  (17) 

and ( ( ), )
p

H qq Μ  is the Hessian of the function ( ; )
p

r q Μ  

evaluated at q . The estimate of the robust posterior 

probability distribution of q  using (16) can be implemented 

efficiently in a parallel computer cluster, carrying out 
simultaneously the optimization problems for a range of q  

values.  

3.2 Gradien- based Optimization Algorithms  

The optimization problems that arise in the asymptotic 
approximations are solved using available single objective 
optimization algorithms. The optimization of ( ; )g  Μ  given 

in (6) and the optimization of ( ; )
G

r q Μ  or ( ; )
p

r q Μ  given in 

(13) or (17), respectively, with respect to   can readily be 

carried out numerically using any available algorithm for 
optimizing a nonlinear function of several variables. In 
particular, iterative gradient-based optimization algorithms 
can be conveniently used to achieve fast convergence to the 
optimum. However, to guarantee the convergence of the 
gradient-based algorithms for models involving a relatively 
large number of DOFs, the gradient of the objective function 
with respect to the parameter set   has to be estimated with 

sufficient accuracy. It has been observed that numerical 
algorithms such as finite difference methods for gradient 
evaluation do not converge due to the fact that the errors in 
the numerical estimation may provide the wrong directions in 
the search space, especially for intermediate parameter values 
in the vicinity of a local/global optimum. The remedy is to 
provide analytical expressions for the gradients of the 
objective function. This, however, requires the development 
of the analytical equations for the gradients of the response 
quantities of interest involved in the objective functions 

( ; )g  Μ  and ( ; )
G

r q Μ  which, for complex models of 

systems, might not be convenient or it may be impossible to 
accomplish for non-smooth systems.  

Adjoint methods, if applicable for a system, provide a fast 
estimate of the gradients of the objective function with respect 
to all parameters, which is computationally very effective 

since it requires the solution of a single adjoint problem for 
finding the gradients, independently of the number of 
variables in the set  . Example of adjoint methods for 

Bayesian parameter estimation can be found in [24] for linear 
structural dynamics applications of the Bayesian framework 
based on modal frequencies and mode shapes. In particular, 
for linear representation of the stiffness and mass matrices 
with respect to the model parameters, adjoint methods can be 
made model non-intrusive as presented in Section 7.1. For 
nonlinear models of structures, the adjoint techniques are 
model intrusive, requiring tedious algorithmic and software 
development that in most cases are not easily integrated 
within the commercial software packages. Selected examples 
of model intrusiveness includes the sensitivity formulation for 
hysteretic-type nonlinearities in structural dynamics and 
earthquake engineering [25, 26], and the adjoint formulation 
for certain classes of turbulence models in computational fluid 
dynamics applications [27].  

Independent of the computer resources available, a 
drawback of the gradient-based optimization algorithms is that 
they may convergence to a local optimum, failing to estimate 
the global optimum for the cases where multiple local/global 
optima exist.  

3.3 Stochastic Optimization Algorithms 

Evolution strategies are more appropriate and effective to use 
in cases of multiple local/global optima. Evolution strategies 
are random search algorithms that explore better the 
parameter space for detecting the neighborhood of the global 
optimum, avoiding premature convergence to a local 
optimum. A disadvantage of evolution strategies is their slow 
convergence at the neighborhood of an optimum since they do 
not exploit the gradient information. However, evolutionary 
strategies are highly parallelizable so the time to solution in a 
HPC environment is often comparable to conventional 
gradient based optimization methods, with the extra 
advantages that evolutionary stategies will have a better 
chance of finding the global optimum. In addition, stochastic 
optimization algorithms do not require the evaluation of the 
gradient of the objective function with respect to the 
parameters. Thus, they are model non-intrusive since there is 
no need to formulate the adjoint problem. In some cases the 
adjoint formulation requires considerable algorithmic 
development time to set up the equations for the adjoint 
problem and implement this formulation in software. In other 
cases (e.g. contact and impact problems) the development of 
an adjoint formulation or analytical equations for the 
sensitivity of objective functions to parameters is not possible.  

Stochastic optimization algorithms can be used with parallel 
computing environments to find the optimum for non-smooth 
functions or for models that an adjoint formulation is not 
possible to develop. Examples include hysteretic models of 
structural components, as well as problems involving contact 
and impact. In the absence of a HPC environment, the 
disadvantage of the stochastic optimization algorithms arises 
from the high number of system re-analyses which may make 
the computational effort excessive for real world problems for 
which a simulation may take minutes, hours or even days to 
complete.  
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The covariance matrix adaptation (CMA) algorithm [28] 
exhibits fast convergence properties among several classes of 
evolutionary algorithms, especially when searching for a 
single global optimum. In this work, a parallelized version of 
the CMA is used to solve the single-objective optimization 
problems arising in the asymptotic estimates. 

The Hessian estimation required in Bayesian asymptotic 
approximations can be computed using the Romberg method 
[29]. This procedure is based on a number of system re-
analyses at the neighborhood of the optimum, which can all be 
performed independently for problems involving either 
calibration or propagation, and are thus highly parallelizable.     

Note that an alternative way for uncertainty propagation that 
can substantially expedite the propagation process as well as 
improve the accuracy of the estimates in a HPC environment 
is to draw samples from the asymptotic Gaussian posterior 
PDF and then provide a sampling estimate of the robust 
propagation integral. The sample generation from the 
Gaussian posterior PDF and the propagation to provide robust 
estimate of the uncertainties of a number of important 
quantities of interest are fully parallelized processes. 

4 STOCHASTIC SIMULATION ALGORITHMS  

Stochastic simulation algorithms (e.g. Markov Chain Monte 
Carlo (MCMC) [4-6] and Transitional MCMC [7]) are used to 

generate samples ( )iq , 1, ,i N= , that populate the 

posterior pdf in (2). Among the stochastic simulation 
algorithms available, the transitional MCMC algorithm 
(TMCMC) [7] is one of the most promising algorithms for 
finding and populating with samples the importance region of 
interest of the posterior probability distribution, even in 
challenging unidentifiable cases and multi-modal posterior 
distributions. Approximate methods based on Kernels are then 
used to estimate marginal distributions of the parameters. In 
addition, the TMCMC method yields an estimate of the 

evidence in (3) of the model class Μ
i
 based on the samples 

generated by the algorithm.  
Stochastic simulation methods can be conveniently used to 

estimate the multi-dimensional integrals (8) and (9) from the 

samples ( )iq , 1, ,i N= , generated from the posterior 

probability distribution ( | , )p Dq Μ . In this case, the 

integrals (8) and (9)  can be approximated by the sample 
estimates  
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p q D p q
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q
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respectively. For ( )G q q=  and 2( ) ( [ | , ])G q q E q D= - Μ , 

the estimate (19) respectively simplify to the posterior 
(updated) robust mean of q  
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and the posterior robust variance 
2 2[( ( ) ) | , )]

q q
E q Ds q m= - Μ  of q  given by 
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taking into account the model uncertainties.  

4.1 Parallel TMCMC in HPC Environment 

HPC techniques are used to reduce the computational time of 
TMCMC algorithm [7]at the computer hardware level. The 
TMCMC algorithm is very-well suited for parallel 
implementation in a computer cluster. Details of the parallel 
implementation are given in [13]. Specifically, a parallel 
implementation algorithm is activated at every stage of the 
TMCMC algorithm exploiting the large number of short, 
variable length, chains that need to be generated starting from 
the leader samples determined from the TMCMC algorithm at 
the particular stage. Static and dynamic scheduling schemes 
can be conveniently used to optimally distribute these chains 
in a multi-host configuration of complete heterogeneous 
computer workers.  The static scheduling scheme distributes 
the chains in the workers using a weighted round-robin 
algorithm so that the number of likelihood evaluations is 
arranged to be the same for each computer worker. The static 
scheduling scheme is computational efficient when the 
computational time for a likelihood evaluation is the same 
independently of the location of sample in the parameter space 
as well as when surrogate estimates are not activated. The 
dynamic scheduling scheme is more general, ensuring a more 
efficient balancing of the loads per computer worker in the 
case of variable run time of likelihood function evaluations 
and unknown number of surrogates activated during 
estimation. Specifically, each worker is periodically 
interrogated at regular time intervals by the master computer 
about its availability and samples from TMCMC chains are 
submitted to the workers on a first come first serve basis to 
perform the likelihood function evaluations so that the idle 
time of the multiple workers is minimized.  

It should be noted that uncertainty propagation using 
stochastic simulation algorithms is highly parallelizable. For 
infinite computing resources, the time to solution for making 
robust prediction of a number of response quantities of 
interest can be of the order of the time to solution for one 
simulation run. In addition, in contrast to asymptotic 
approximations, stochastic simulation algorithms are non-
local methods capable of providing accurate representations 
for the posterior PDF and accurate robust predictions of 
quantities of interest.  

5 MODEL REDUCTION TECHNIQUES AND 
SURROGATE MODELS 

5.1 Component Mode Synthesis (CMS) Technique 

Model reduction techniques can be applied at the system level 
to reduce the order of the model selected to simulate the 
behavior of the system. The objective is to obtain reduced 
models that run significantly faster than the original high-
fidelity models, incorporating the important dynamics of the 
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system analyzed so that the simulations from the reduced 
model are sufficiently accurate.  

In structural dynamics, dynamic reduction techniques have 
been integrated with Bayesian techniques to carry out system 
analyses in a significantly reduced space of generalized 
coordinates and thus efficiently handle large-order models of 
hundreds of thousands or millions degrees of freedom and 
localized nonlinear actions activated during system operation. 
Specifically, component mode synthesis (CMS) techniques 
[30-32] can be used to alleviate the computational burden 
associated with each model run in the re-analyses required in 
the asymptotic and stochastic simulation methods. CMS 
techniques divide the structure into components with mass 
and stiffness matrices that are reduced using fixed-interface 
and constrained modes. Dividing the structure into 
components and reducing the number of physical coordinates 
to a much smaller number of generalized coordinates certainly 
alleviates part of the computational effort. However, at each 
iteration or TMCMC sampling point one needs to re-compute 
the eigen-problem and the interface constrained modes for 
each component. This procedure is usually a very time 
consuming operation and computationally more expensive 
that solving directly the original matrices for the eigenvalues 
and the eigenvectors, due to the substantial computational 
overhead that arises at component level.  

The main objective in methods involving re-analyses of 
models with varying properties is to avoid, to the extent 
possible, the re-computation of the eigenproperties at the 
component or system level. Such techniques have been 
incorporated in methods for uncertainty management in 
structural dynamics to efficiently handle the computational 
effort in system re-analyses that arise from FE model 
variations caused by variations in the values of the uncertain 
parameters [33-35]. In particular, perturbation techniques [36] 
provide accurate results locally for small variations of the 
model parameters about a reference structure. To improve the 
accuracy of the approximations for large variation of the 
model parameters, methods have been proposed to 
approximate the modes at the component or system level in 
terms of the modes of a family of structures corresponding to 
support points in the parameter space [33]. In [37], linear and 
quadratic interpolations of the structural mass and stiffness 
matrix and the matrix of eigenvectors at the component and/or 
system level using support points in the larger region in the 
parameter space have been proposed. Such methods have been 
successfully used for model updating of large-order models of 
structures [38], and for damage detection at component level 
[39]. These techniques proved to be quite effective in 
substantially reducing the computational demands in problems 
requiring system re-analyses.  

Fast and accurate CMS techniques, consistent with the finite 
element (FE) model parameterization, have recently been 
proposed [10] to achieve drastic reductions in computational 
effort. Specifically, for certain parameterization schemes for 
which the mass and stiffness matrices of a component depend 
linearly on only one of the free model parameters to be 
updated, often encountered in FE model updating 
formulations, the full re-analyses of the component eigen-
problems are avoided, reducing substantially the 
computational demands, without compromising the solution 

accuracy. The eigenproperties and the interface constrained 
modes at a structural component as a function of the model 
parameters can be computed inexpensively from the 
eigenproperties and the interface constrained modes that 
correspond to a nominal value of the model parameters.  

Specifically let 
j

D  be the set of structural components 

that depend on the j -th parameter 
j

q . Consider the case for 

which the stiffness matrix of a component 
j

s ÎD  depends 

linearly on 
j

q  and the mass matrix is independent of 
j

q , i.e. 

( ) ( )s s

j
K K q=  and ( ) ( )

0

s sM M= .  It can be readily derived that 

the stiffness and mass matrices of the Craig-Bampton reduced 
system admits the representation 
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ˆ ˆ ˆ
N

CB CB CB

j j
j

K K K
q

q
=

= +å  (22) 

and  

 
0

ˆ ˆCB CBM M=  (23) 

It is important to note that the assembled matrices 
0

ˆ CBK , 
,

ˆ CB

j
K  

and 
0

ˆ CBM  of the Craig-Bampton reduced system in the 

expansion  (22) and (23) are independent of the values of q . 
In order to save computational time, these constant matrices 
are computed and assembled once and, therefore, there is no 
need this computation to be repeated during the iterations 
involved in optimization or TMCMC sampling algorithms for 
model updating due to the changes in the values of the 
parameter vector q . This saves substantial computational 
effort since it avoids (a) re-computing the fixed-interface and 
constrained modes for each component, and (b) assembling 
the reduced matrices from these components.  

Further reduction in the generalized coordinates can be 
achieved by replacing the interface DOFs by a reduced 
number of constraint interface modes [40] formed by a 
reduced basis. Selecting the reduced basis to be constant, 
independent of q , the formulation significantly simplifies. 
The reduced basis can be kept constant at each iteration 
involved in the optimization algorithm or updated every few 
iterations in order to improve convergence and maintain 
accuracy. 

Following the formulation proposed in [10], the 
aforementioned framework can be extended to handle the case 
for which the component stiffness and mass matrices depend 

nonlinearly on a single parameter 
j

q  of the system parameter 

set q . This is the case for which the stiffness and mass 

matrices of a component 
j

s ÎD  depend nonlinearly on 
j

q , 

i.e. ( ) ( ) ( ) ( )s s s

j
K K f q=  and ( ) ( ) ( ) ( )s s s

j
M M g q= , where 

( ) ( )s

j
f q  and ( ) ( )s

j
g q  are nonlinear functions of the 

parameter 
j

q . The interface modes, the modal frequencies and 

the interface constrained modes of a component can readily be 
computed by the corresponding interface modes, modal 
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frequencies and interface constrained modes of the same 
component for a reference structural configuration 
corresponding to a particular nominal value of the parameter 

set q  as well as the current value of the parameter 
j

q . In the 

nonlinear case, a representation similar to  (22) and (23) is no 
longer applicable and the reduced mass and stiffness matrices 
of the reduced structure should be re-assembled from the 
component mass and stiffness matrices for the new value of 

j
q . This procedure also saves substantial computational effort 

since it avoids re-computing the fixed-interface and 
constrained modes for each component.  

Applications of the parameterization consistent CMS 
techniques in structural identification and Bayesian UQ+P can 
be found in [10] for a high fidelity solid finite element model 
of a bridge. Reduction of three to four orders of magnitude in 
generalized DOFs were achieved for accurately estimating the 
lowest 20 modes of the bridge. The aforementioned CMS 
techniques have also been extended to reduce the models of 
linear structural components of nonlinear structures. 
Applications in civil infrastructure can be found in [11] for a 
base isolated building where the superstructure behaves 
linearly and the isolation is nonlinear. Drastic reductions in 
the time required to carry out the simulations of the nonlinear 
system with reduced linear components, within the 
Transitional MCMC, were observed, without compromising 
the solution accuracy. Model reduction techniques and 
parallelization were used in [38] to drastically reduce the 
computational time for a class of models for complex 
aerospace structures involving hundreds of thousands of 
DOFs. The model reduction techniques are essential in certain 
damage identification methods that are based on analyzing a 
large number of parameterized finite element model classes, 
each one monitoring a possible damage scenario in the 
structure, for selecting the model class and thus the damage 
scenario that best fits the measured data [18]. It has been 
demonstrated that the computational time for challenging 
model-based damage identification (detection and localization 
of damage) of structures modeled by finite element models 
with hundreds of thousands of DOFs can be drastically 
reduced by exploiting model reduction techniques and 
parallelization [41].  

5.2 Surrogate Models 

Surrogate models are used to reduce the computational time at 
the level of the algorithm.  The objective is to avoid the full 
structural dynamics model runs at a sampling point in the 
parameters space by exploiting the function evaluations that 
are available at the neighbour (design) points in order to 
generate an approximate estimate. Surrogate models are well-
suited to be used with the TMCMC method. Details of the 
implementation of surrogate models with TMCMC algorithm 
are given in [13]. Specifically, following [13], a kriging 
technique [12] is used to approximate the function evaluation 
at a new sampling point at a TMCMC stage using the function 
evaluations at neighbour points in the parameter space 
available from previous TMCMC stages. To ensure a high 
quality approximation, a surrogate estimate is accepted only if 
it satisfies certain conditions as follows.  

The surrogate estimate is based on a user-defined number of 
support points which are in the neighbor of the surrogate 
point. The minimum number of support points depends on the 
dimension of the uncertain parameter space and the order of 
the kriging interpolation. The surrogate point belongs to the 
convex hull of the design points so that an interpolation is 
performed, while extrapolations are prohibited. The design 
points correspond to actual system simulations and not other 
surrogate estimates from previous stages, avoiding error 
propagation and subsequent deterioration of the surrogate 
quality. The design point are kept the same when generating 
the surrogate estimates within a chain of the TMCMC stage, 
avoiding discontinuities in the estimates of the sampling 
points in a chain caused by changing the design points. The 
surrogate estimate is checked whether its predicted value is 
within the lower 95% quantile of all the design point’s 
likelihood values accounted so far. The purpose of the 
threshold is to prevent overshooting surrogate estimates as 
this will quickly lead to the breakdown of the sampling 
procedure due to the concentration of most points around this 
overshooting estimate. The surrogate estimate is accepted if 
the prediction error is smaller than a user specified tolerance 
value.  

It has been demonstrated that the proposed adaptive kriging 
method can achieve up to one order of magnitude reduction in 
computational effort.  

6 CONVENTIONAL VERSUS HIGH PERFORMANCE 
COMPUTING 

The effectiveness of the Bayesian computing tools outlined in 
the previous sections, in terms of convenience and 
computational efficiency, depends on the computing 
environment available. Next, we will discuss the effectiveness 
for the case where the computations run in series in 
conventional multi-core desktop machines or in parallel in 
HPC environments involving a large number of cores.  

It should be noted that the time to solution for representing 
the posterior PDF by either an approximate Gaussian 
distribution or by MCMC samples drawn from the posterior 
PDF, depends on the computational time required to perform 
the number of system re-analyses involved in the asymptotic 
approximations and stochastic simulation algorithms. The 
time to solution can be significantly reduced in HPC 
environments if the processes involved in these two classes of 
Bayesian tools are parallelizable. For the two classes of 
Bayesian computing tools, requiring gradient based or 
stochastic optimization algorithms as well as stochastic 
simulation algorithms, computational efficient schemes for 
conventional as well as high performance computing 
environments are next discussed. 

6.1 Gradient-Based Algorithms 

Gradient-based optimization algorithms are iterative 
algorithms for which the computations at an iteration depend 
on the computations involved in the previous iterations. So 
parallelization of the iterative scheme is not possible. 
Independently of the number of computer cores available, the 
time to solution equals to  

 
, ,

( )
G sol f a G iter

t t t N   (24) 
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where 
f

t  and 
a

t  are the computational times required to solve 

the forward problem and the adjoint problem or the equations 
for computing the gradients of the objective function, 

respectively, and ,G iterN  is the number of iterations required 

in the optimization algorithm for convergence to the optimum. 
For the case for which an analytical formulation for the 

gradients of the objective function with respect to the number 
of variables is available, then at each iteration these gradient 
evaluations can be performed in parallel for all variables 
involved. In this case, the number of parallel evaluations 
equals the number of variables. For gradients of objectives 
that can be efficiently evaluated through adjoint formulations 
available for the system analyzed, only one adjoint system has 
to be solved which requires the solution of the forward 
system. In such cases extra computer cores for parallelization 
are not needed at the level of the iterative optimization 
algorithm. However, for certain systems, parallelization may 
be needed at the level of the adjoint formulation as it is 
described in the Section 7.1 for uncertainty quantification of 
linear models based on identified modal characteristics. 
Finally, parallelization of the solution process is also possible 
at the model level using, for example, the CMS techniques to 
carry out the analysis in all linear structural components in 
parallel.  

All methods for computing the Hessian at the optimum, 
required in asymptotic approximations, can be fully 
parallelized. Computations of the Hessian can be performed 
approximately using the finite difference method, requiring 

( 1)N N    model runs. Alternatively, depending on the type 

of the system, more accurate second-order adjoint methods for 
the system at hand can be developed which usually requires 

N  computations that can be performed in parallel. The 

solution of the N  adjoint problems can be parallelized to be 

executed simultaneously, yielding a time to solution equal to 
the one required for solving a single second-order adjoint 
problem. This means that the time to solution in a parallel 

environment increases by a factor of ( ) / ( )
f a aa f a

t t t t t   , 

where 
aa

t  is the solution time required for the second-order 

adjoint system. Thus, in HPC environment the adjoint system 
re-analyses does not add to the computational effort required 
for estimating the asymptotic Gaussian posterior PDF. For 
serial computations, the computing time for second-order 

adjoint system is 
aa

t N  which depends on the number N  of 

parameters and the solution time 
aa

t  of the second-order 

adjoint system. This additional time is significant only if the 

number of parameters N  is of the order the number of 

iterations 
,G iter

N  in (24). Otherwise, the estimate in (24) 

controls the time to solution.  

6.2 Evolutionary Algorithms 

For evolutionary algorithms, such as the CMA algorithm [28] 
used in this work, the parallel computations can be performed 
at each generation simultaneously for the multiple analyses of 

the system for all number of population samples involved in 
each generation. In a parallel computing environment, the 
time to solution equals to  

 
, , , ,

( / )
ES sol f ES gen ES pop ES cores

t t N ceil N N  (25) 

where 
,ES gen

N  is the number of generations involved in the 

evolutionary algorithm, 
,ES pop

N  is the number of population at 

each generation and 
,ES cores

N  the number of computer cores 

available to run computations in parallel. For large number of 

available computer cores such that 
, ,ES cores ES pop

N N , the time 

to solution is 
, ,ES sol f ES gen

t t N  which depends only on the 

number of generations 
,ES gen

N .  

Comparing this simplified estimate to the time to solution 
for the gradient-based optimization method (assuming that 

a f
t t ), it is clear that the ratio 

, ,
/ (2 )

ES gen G iter
N N   is a 

measure of the computational efficiency of the stochastic 
optimization method in relation to the gradient-based 
optimization method. Values of this ratio close to one or less 
than one makes the stochastic optimization method the 
preferred method since the extra burden of formulating the 
sensitivities of response quantities with respect to the model 
parameters is avoided without significantly affecting the 
computation effort. Certainly, for values of   significantly 

higher than one, in selecting one method against another, one 
has to trade off the development time required to formulate 
and implement in software the gradients required in gradient 
based optimization methods. For computations in 

conventional machines, the time to solution is 
, ,f ES gen ES pop

t N N  

which may be excessive due to the very large number of 
function evaluations arising from the high number of 

population samples 
,ES pop

N .   

6.3 Stochastic Simulation Algorithms 

For single-chain MCMC stochastic simulation algorithms, 
parallelization of the system runs is not possible. The time to 
solution is  

 
, ,MCMC sol f MCMC samples

t t N  (26) 

where 
,MCMC samples

N  is the number of samples required in the 

MCMC algorithm to obtain an sufficiently accurate 
description of the posterior PDF. For the multi-chain MCMC 
algorithms, such as the TMCMC, the time to solution depends 
on the number of parallel chains and the number of computer 
cores available. For the highly-parallelized TMCMC 
algorithm [13], the time to solution for the case of infinite 
resources is given by  

 
1

, 1,

0

max( )
m

parallel TMCMC

TMCMC sol f j i
i

j

t t n





   (27) 
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where 
1,

TMCMC

j i
n


 is the number of samples available for the i -th 

chain out of the 
1

ˆ1, , TMCMC

j
i N


   chains generated at TMCMC 

stage 1j  , with 1
ˆ

1, 11

TMCMC

j
N TMCMC TMCMC

j i ji
n N

 
  be the number of 

samples per TMCMC stage. Note that the ratio 

1, 1 1
max( ) /TMCMC TMCMC

j i j j
i

n N 
  

  of the largest number of samples 

over any chain in the stage 1j   over the total number of 

samples in the chain is a very small fraction of the number 

samples at a stage, i.e, 
1

1
j



 .   

The total number of TMCMC samples for all stages is 
1

10

m TMCMC TMCMC

j samplesj
N N




 . For computations carried out in a 

conventional desktop computer, the time to solution is  

 
,

TMCMC

samplesserial

TMCMC sol f desktop

cores

N
t t

N
  (28) 

where desktop

cores
N  is the number of desktop cores available. 

Usually, desktop

cores
N  is 8 for a conventional four-core multi-

threaded computer. In the case of infinite computer resources, 
the effectiveness of the parallel computation defined as the 
ratio of the time to solution performed in parallel computing 
environment over the time to solution performed in serial 
computing environments is  

 
1

,

1

1,

1
paralel m

TMCMC sol

jserial
jTMCMC sol

t

t m







   (29) 

the average value of 
1

1
j



 . For surrogate models, this 

number can be reduced considerably (by an order of 
magnitude), resulting in additional substantial reductions in 
the time to solution.   

Based on the analyses in this section, it can be inferred that 
in the absence of a HPC environment, Bayesian asymptotic 
approximations using gradient-based optimization algorithms 
and adjoint methods are clearly the preferred tools for 
performing parameter estimation. For uncertainty propagation 
and estimation of simple measures of uncertainties such as 
mean and standard deviation for output quantities of interest, 
there might be significant computational effort involved when 
the number of response quantities of interest is large. 
Stochastic optimization algorithms should be avoided since 
they involve a substantially larger number of model re-
analyses. For a HPC environment, it is best to implement the 
Bayesian asymptotic tools using stochastic optimization 
algorithms and the Romberg method for evaluation of the 
Hessian, since the time to solution is usually comparable to 
the one required for the gradient-based optimization 
algorithms and the often tedious development of the adjoint 
formulation is completely avoided. For certain problems 
where adjoint formulation are not possible, the stochastic 
simulation algorithms should be the preferred algorithm to 
use. Moreover, the availability of a HPC environment 
promote the use of parallelized stochastic simulation 

algorithms such as TMCMC since the time to solution is 
drastically reduced.  

Model reduction methods significantly reduce the 
computational effort. Surrogate models mainly applicable 
with TMCMC reduce further the time to solution by one order 
of magnitude.  

7 IMPLEMENTATION IN STRUCTURAL DYNAMICS 

In structural dynamics the uncertainty quantification analysis 
and the formulation of the likelihood in (2) depends on the 
models used. For linear models one often employs as 
measurements the identified modal characteristics (modal 
frequencies, mode shapes and damping ratios) to quantify the 
uncertainty in structural model parameters. For nonlinear 
models one usually employs full response time history 
measurements or nonlinear frequency response spectra 
measurements. Details in the implementation of the Bayesian 
framework for the linear and nonlinear model cases are 
presented next separately for each model case and 
measurements available.  

7.1 Bayesian UQ for Linear Modes 

For linear models of structures the quantification of the 
uncertainties in the model parameters is often based on 
identified modal characteristics such as modal frequencies and 
mode shapes at the locations where sensors are placed. Details 
on the formulation of the likelihood in (2) can be found in a 
number of published papers (e.g. [15, 42-46]). The 
formulation often depends on the user postulation of the 
prediction errors in (1). Independently of the details in the 
formulation, the likelihood and the posterior of the parameters 
of a model, usually a finite element model, are functions of 
the modal frequencies and the mode shapes predicted by the 
finite element model. A posterior PDF evaluation for a 
particular value of the model parameters requires the solution 
of the eigenvalue problem related to stiffness and mass 
matrices of the structural model.  

At the model level, model reductions techniques [10, 37] 
have been proposed to considerably reduce the size of the 
stiffness and mass matrices by several orders of magnitude. In 
particular, computational efficient model reduction techniques 
based on component mode synthesis have been developed to 
handle certain parameterization schemes for which the mass 
and stiffness matrices of a component depend linearly on only 
one of the free model parameters to be updated, often 
encountered in FE model updating formulations. In such 
schemes, it has been shown that the repeated solutions of the 
component eigen-problems are completely avoided, reducing 
substantially the computational demands, without 
compromising the solution accuracy [10]. The model 
reduction methods are applicable to both asymptotic and 
stochastic simulation tools used in Bayesian framework.  

For Bayesian asymptotic approximations, first-order and 
second order adjoint techniques have been developed [24] 
using the Nelson’s method [47] to efficient compute the 
required first and second order sensitivities in the optimization 
problems and the Hessian computations. An advantage of the 
Nelson method is that the gradient of the modal frequencies 
and the modeshape vector of a specific mode can be computed 
from only the value of the modal frequency and the 
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modeshape vector of the same mode, independently of the 
values of the modal frequencies and modeshape vectors of the 
rest of the modes. For structural model classes with large 
number of degrees of freedom and very few contributing 
modes, this representation of the gradients clearly presents 
significant computational advantages over methods that 
represent modeshape gradients as a weighted, usually 
arbitrarily truncated, sum of all system modeshape vectors 
[48]. The end result of the proposed adjoint method is the 
solution of as many linear systems of equations as the number 
of model predicted modes. The size of the linear systems 
equals the number of the DOFs of the structural model which 
adds to the computational burden. However, the linear system 
of equations is independent of each other and can be carried 
out in parallel, significantly accelerating the time to solution. 
The integration of model reduction techniques with the adjoint 
methods can be found in [10].  

Adjoint methods are easily applicable with any commercial 
computational mechanics software package since the only 
information required is the representation of the mass and 
stiffnesss matrices with respect to the model parameters. For 
linear representation given by the expansion 
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the adjoint formulation becomes independent of the software 
package used to assemble the stiffness and mass matrices. The 
evaluation of the individual matrices appearing in the 
expansions (30) and (31) can be performed off-line using any 
software package. Then the adjoint methods can be 
formulated based on these matrices, avoiding model intrusion 
or integration with a computational mechanics software 
package.  

For Bayesian asymptotic approximations using stochastic 
optimization algorithms, the model reduction methods can 
substantially reduce the computational effort. For Bayesian 
stochastic simulation tools, in addition to the model reduction 
method applied at the system level, surrogate estimates 
applied at the algorithmic TMCMC level can be used to 
reduce the number of full system re-analyses. Due to the large 
number of measured quantities (modal frequencies and 
modeshape compoents for all measured modes), surrogate 
estimates are conveniently used on the log posterior function 
instead of the individual modal frequencies and mode shape 
components.   

7.2 Bayesian UQ for Nonlinear Models 

The type of nonlinearities encountered in structural dynamics 
include hysteretic nonlinearities as well as nonlinearities 
arising from contact and impact between surfaces, as well as 
from nonlinear isolation devices such as nonlinear dampers in 
civil infrastructure and nonlinear suspension models in 
vehicles. In a number of structural dynamics cases, the 
nonlinearities are localized in isolated parts of a structure, 
while the rest of the structure behaves linearly. Such localized 
nonlinearities can be found in vehicles where the frame 

usually behaves linearly and the nonlinearities are activated at 
the suspension mainly due to the dampers. In civil engineering 
structures the nonlinearities are at some cases localized at the 
various structural elements (dampers, etc) introduced to 
isolate the structure during system operation.  

For nonlinear models of structures the quantification of the 
uncertainties in the model parameters depends on the 
measured quantities that are available. Depending on the type 
of application, two types of measured quantities are usually 
available: full response time histories or frequency response 
functions. The likelihood formulation in  (2) depends on the 
type of the measured quantities provided.  

Details on the formulation of the likelihood for the case 
where full measured response time histories are available can 
be found in (e.g. [49-51]). The formulation often depends on 
the user postulation of the prediction errors in (1). The 
likelihood and the posterior of the parameters of a finite 
element model are functions of the response time histories 
predicted by the finite element model. Each posterior 
evaluation requires the integration of the nonlinear set of 
equation of motion of the structure. 

The formulation of the likelihood for the case where 
nonlinear frequency response spectra are available can be 
found in [11, 52]. The likelihood and the posterior of the 
parameters of the nonlinear finite element model are functions 
of the frequency response spectra predicted by the finite 
element model. Each posterior evaluation requires the 
integration of the nonlinear set of equation of motion of the 
structure for as many different number of harmonic 
excitations as the number of frequency response spectra 
ordinates. This, however, increases substantially the 
computational effort.  

At the model level, model reduction techniques based on 
CMS are readily applicable for special class of problems 
where the nonlinearities are localized at isolated parts of the 
structure. In such cases the structure can be decomposed into 
linear and nonlinear components and the dynamic behavior of 
the linear components be represented by reduced models. An 
implementation of such framework can be found in [11] 
where it is demonstrated that substantial reductions in the 
DOFs of the model can be achieved which eventually yield to 
reduction in computational effort for performing a simulation 
run without sacrificing the accuracy.  

For Bayesian asymptotic approximations, analytical 
approximations of the gradients of objective functions are not 
readily available. The development time and software 
implementation may be substantial. For certain classes of 
hysteretic nonlinearities, formulations for the sensitivities of 
the response quantities to parameter uncertainties have been 
developed [25] and can be used within the Bayesian 
framework. However, it should be pointed out that such 
formulation are model intrusive and are not easily integrated 
to commercial computer software packages available for 
simulating nonlinear structural dynamics problems. For the 
model cases where adjoint techniques can be applied, the 
development time may be substantial. However, for a number 
of important nonlinear class of models (e.g. impact, 
hysteretic) or output quantities of interests (e.g. frequency 
response spectra), adjoint methods are not applicable. The 
absence of adjoint formulation may substantially increase the 
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computational cost and/or render gradient-based optimization 
algorithms unreliable for use with Bayesian asymptotic 
approximation tools. Stochastic optimization and stochastic 
simulations algorithms within a HPC environment are 
respectively the preferred algorithms to be used with Bayesian 
asymptotic and stochastic simulation tools.  

At the algorithmic level, surrogate estimates are also 
applicable. For the case where the measurements are given as 
full response time histories, the surrogate estimates are 
applied to approximate the value of the log posterior PDF. For 
the case where the measurements consist of nonlinear 
frequency response spectra, it is more convenient 
computationally to apply the surrogate estimates for each 
spectral ordinate of the spectrum [52]. In addition, in the latter 
case, it should be pointed out that the frequency response 
spectral values can run in parallel, taking advantage of HPC 
environments to speed up computations.  

8 CONCLUSIONS 

Asymptotic approximations and stochastic simulation 
algorithms used in Bayesian tools for model uncertainty 
quantification and calibration, model selection and 
propagation requires a moderate to large number of finite 
element model simulation runs. For large order finite element 
models with hundred of thousands or even million DOFs and 
localized nonlinearities encountered in structural dynamics, 
the computational demands involved may be excessive, 
especially when a model simulation takes several minutes, 
hours or even days to complete. Drastic reductions in the time 
to solution are achieved by integrating model reduction 
techniques to substantially reduce the` order of high fidelity 
large order finite element models, surrogate models to reduce 
the number of full model simulations within certain classes of 
stochastic simulation algorithms such as TMCMC, and 
parallelization techniques to efficiently distribute the 
computations in available multi-core CPUs.  

In the case where parallel computing facilities are not 
available, adjoint techniques integrated within Bayesian 
asymptotic tools provide an alternative feasible solution for 
large order finite element models that can reduce considerably 
the computational effort in iterative gradient-based 
optimization schemes. However, adjoint techniques are model 
intrusive and not applicable for certain class of models, while 
gradient-based optimization algorithms for Bayesian 
asymptotic analyses have certain disadvantages, ranging from 
inability of adequately exploring the parameter space, finding 
the global optimum, representing multimodal posterior 
distributions, treating challenging supports and unidentifiable 
cases. In parallel computing environments, stochastic 
optimization algorithms provide computationally feasible 
solution strategies for Bayesian asymptotic analyses. They do 
no require adjoint techniques and thus are model non-intrusive 
and applicable to any type of linear and nonlinear models. 
Also, they can explore better the parameter space with higher 
chances of finding the global optimum.  

Parallelization is critical in Bayesian stochastic simulation 
tools used for uncertainty quantification and propagation of 
large-order finite element models. The time to solution for 
certain classes of parallelizable MCMC such as TMCMC is 
not prohibitively excessive and often is comparable to a 

certain degree to the time of solution observed in Bayesian 
asymptotic tools. However, only certain types of MCMC 
techniques, such as the TMCMC used in this study, are 
parallelizable. In order to manage uncertainties in modeling 
and predictions using high-fidelity large-order nonlinear finite 
element models involving millions of DOFs, future research 
efforts should concentrate in further developing highly 
parallelizable stochastic simulation algorithms to interface 
with general-purpose commercial computational structural 
dynamics software.  
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